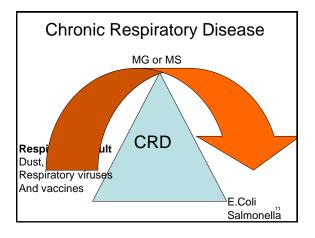
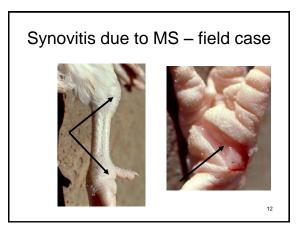


Aim until now: Mycoplasma freedom for poultry

- · Essential for genetic stock
 - Single age
 - Well isolated
 - 400 yards (≈400 metres) between sheds (AA GP manual)
 - Achieved for MG in the 1970s
 - MS?
- · Gives options to customers
 - Breaks are a problem (production forecast)
 No immunity in flock
 - Risk management

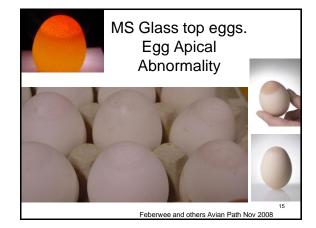
Myth 1: MS does nothing. • Anything MG can do Clinically mycoplasmosis can MS can also do. be diagnosed but Chronic infections laboratory testing mean these (culture and organisms stay speciation or PCR) is around. need to differentiate · Antibiotics can make MG and MS as the infection status cause difficult to determine.


Quantification Mycoplasma gallisepticum • Layers – 10 to 20 eggs per year and FCR • Egg drop in lay	Of Pathogen cost Mycoplasma synoviae Layers – 5-10 eggs per year and FCR Infectious synovitis – Amyloidosis in brown layers Egg drop in lay Decreased hatchability
 Decreased hatchability Primary respiratory 	 Increased condemnations Respiratory disease in combination other viruses and respiratory vaccines
disease and CRD – Mortality and poor FCR in progeny	 <i>E. coli</i> Peritonitis in layer Glass top eggs adapted from Stipkovits and Kempf ⁸1996


MS strain effects

- Most strains do not cause . Harder to grow than Infectious synovitis - Often no joint disease
- Some countries' vets argue that their MS strains do nothing so why worry
 - Because their country describes MS new syndromes every year
 - Their experts say MS is important
- MG
 - NAD requirement
 - No stationary phase
- · Harder to control
 - No official control
 - No monitoring

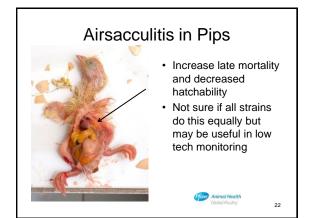
Airsaculitis after combined MS & IBV (experimental).

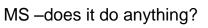


MS involvement in E. coli peritonitis coming into lay

- · Peritonitis in early lay is the most important cause of mortality in commercial layers in Europe
 - Prophylactic enrofloxacin is used in some areas.
- · Experimental evidence from Raviv and Kleven
- · Not the same as peritonitis in Broiler breeders

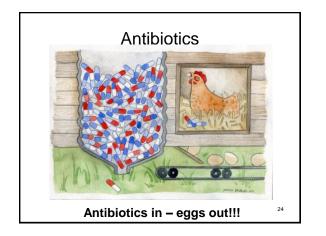
EAA


- This condition is temporarily responsive to OTC or tylosin and MS can be easily isolated from the oviduct.
- May be MS strain associated (Hammond group 3) and IBV may have a big effect
- The Netherlands, Italy, Germany, UK, Turkey, France, Denmark and Japan. Up to 4-10% of eggs
- Less dramatic in Broiler breeders (2%)

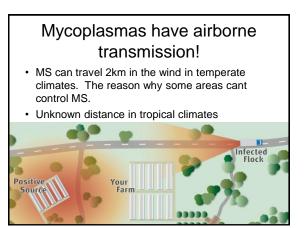

19

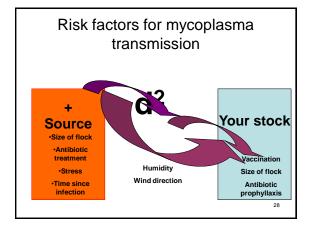
Second quality eggs (Not EAA)

- Hagan & Bradbury: UK Survey done by ELISA on egg yolk and questionnaire.
- Statistically significant increased second quality eggs in MS infected layer flocks
- · Similar findings in Australia
 - Low shell breaking strength and shell deformation in seropositive flocks (yolk antibody)
 - Gole, K.K. Chousalker, J. Lievaart and J. R. Roberts APSS 2012
 20

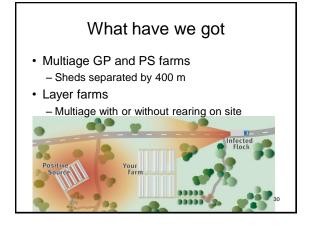


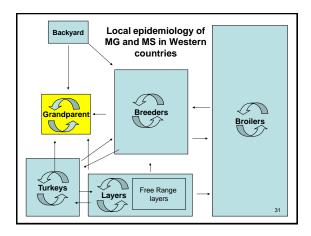
- Often argued that MS does nothing. This is very strain dependent but also salesman dependent.
 - If you cant fix it technically then feature it.
- Some strains cause more problems than MG strains (Strain s10 in Arkansas, Egg production drop, airsacculitis in broiler)
- Under-diagnosed because of prophylactic antibiotic therapy (products with zero withdrawal times).
 22


25



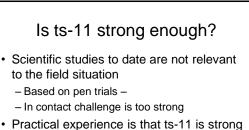
What are antibiotics doing in Asian poultry production


- Limiting MG and MS impact
 - Especially during lay
 Limiting MG and MS antibody production
- Helping to control Avibacterium paragallinarum, P. multicoda, Salmonella, E. coli, Brachyspira species
 - Can we control these with other strategies?



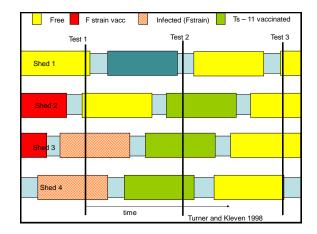
Biosecurity only for Mycoplasma freedom

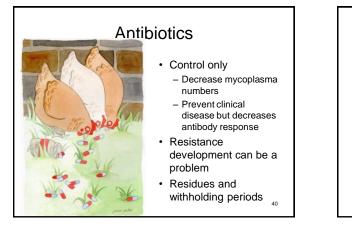
- If you choose freedom then you are maintaining large populations with no protection from infection.
- You must keep the bird separated totally from the mycoplasma.


Multiage layer sites

- Current control in many areas is routine treatment with Tiamulin, tylosin or CTC/OTC often in feed (Zero withdrawal).
- Residues

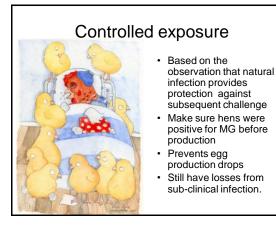
34

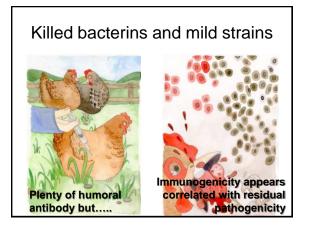

- Resistance (gradual loss of efficacy)
- Other bacterial infections may also be being controlled.
 - Salmonella (vaccinate)
 - Brachyspira (acidify water)



Do you need to eradicate with F strain first before using ts-11?

- Levishon and Kleven 2000 (Rev Sci Tech OIE 19(2): 425-442)
 - "Field experience and unpublished studies...."
 - Contrast to Australian and overseas experience where persistent use of ts-11 has been more successful (K. Whithear pers comm).
- It can be done (Turner and Kleven 1998 Avian Dis 42, 404-407.)
 At a cost (layers, residual virulence, -7 eggs/HH)
- Pen studies results may not be appropriate for extrapolation to the field.

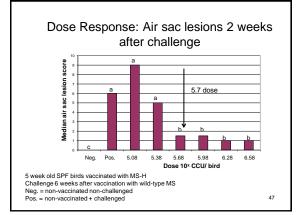


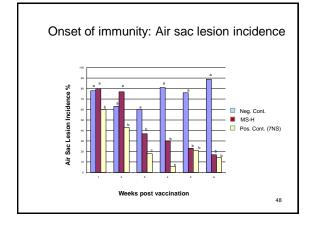

Vaccination aims/claims

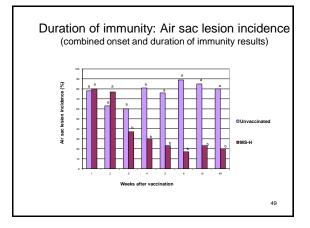
- To prevent clinical disease
 - Respiratory
 - Reproductive
 - Synovitis
- · To prevent exacerbation of other infections
- To prevent vertical transmission
- · To prevent subclinical losses
- To prevent wild strains from infecting birds (horizontal transmission)
- · To decrease antibiotic dependence

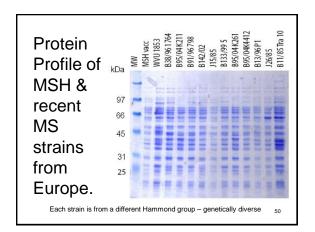
Controlled exposure	1960s	First generation live vaccine	Loss of 5 to 20 eggs
Killed Bacterins	Late 1960s	Injection(s)	Limited DOI and limited protection
Mild strains	1970s	Second generation	F strain 6/85
Attenuated strains	1980s	Third generation	ts-11 MSH
Pox vectored	1990s	Fourth generation	Limited success 42

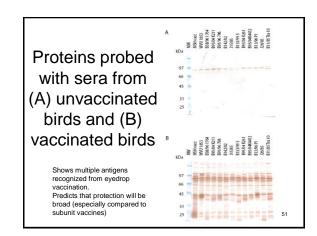
Avian mycoplasma vaccination




ts⁺ vaccines




 Core temperature of the chicken (>41.5C) is too high for the vaccine strain to survive so infection is limited to the upper respiratory tract.



Economic benefits: Australia

- "The introduction of MS-H into the broiler-breeder parent population has meant that clinical disease related to MS is essentially no longer recognised"
- Dr. P. Scott (2002) Merial newsletter 'Vaccination at work in Broiler Breeders'.

52

Economic benefits: Mexico

"The use of bacterins and medication programs has not been effective in MS control. The introduction of MS-H vaccine strain has allowed recovery of productive performance in breeders and their progeny, plus substantial savings due to medication in both. Likewise, its usage in laying hens has allowed the recovery of egg viability and production (4.5 to 13 eggs per bird per cycle)".

Dr. E. Soto. 2002. Proceedings of ANAECA meeting, Puerto Vallarta, Mexico

53

Administration of *ts*⁺ mycoplasma vaccines • Eye drop (1x) betwee 3 and 6 weeks of age

Eye drop (1x) between 3 and 6 weeks of age Administer prior to exposure to wild-type mycoplasma !!

- Dose 30 μ L or \geq 5 x 10⁷ viable organisms Thaw quickly (~35°C
- about 9 minutes) Keep cool
- Use within 2-3 hrs

54

Antibiotic usage in vaccinated flocks

- Amoxycillin (& ceftifour and phosphomycin)
- For gut problems you can use antibiotics not absorbed from the gut
 - Colistin
 - Neomycin, streptomycin, spectinomycin
- Erythromycin (MS inately resistant).
- Don't use two weeks before and for 4 weeks after vaccination.
- If you must use a product with antimycoplasmal activity use in short high doses.
- You wont need it.

Where do these vaccines fit in

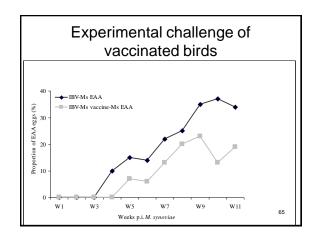
- Eradication
 - ts-11 is particularly suitable this application with its low horizontal spread
 - Suitable after a random break has occurred
- Continuous vaccination
 - Continuous protection
 - If the underlying risk of breaking has not changed then keep vaccinating
 - Discuss with production managers what risk they will accept (insurance)
 56

Asian multi-layered MG control programmes.

- Live MG vaccine (4 weeks)
- Pox vectored MG vaccine (8 weeks)
- 2 x killed MG vaccine
- Tylosin one week per month at .
- Is this any different from Tylosin alone in biological efficacy?
- Tylosin resistance has been noted.

57

Vaxsafe MG (Australian origin)


	Distributor	Registration date
Australia	Bioproperties	1990
Japan	NBI	30 Aug 95
South Korea	Merial	30 Jun 98
Thailand	Pfizer	28 Dec 99
China	Sinder	1999
Malaysia	Pfizer	6 Nov 01
Philipines	Pfizer	14 Mar 01
India	Pfizer	1 Apr 03
Indonesia	Merial	2 Mar 06
Iran	Austral Medi	2010
Turkey	RTA	2011 58

Vaxsafe MG (manufactured under license from Bioproperties)

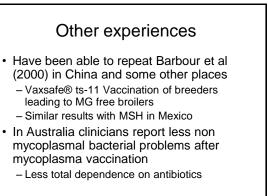
Country	Site of manufacture	Date of registration
USA	USA	8 Feb 1994
South America	USA	From 1999
Brazil	Brazil	2 June 2005
South Africa	USA	Sept 1995
Pakistan	USA	2006
Italy	Italy	1996
Hungary,		Saudi, Lebanon
Romania, Egypt,		Others
Bulgaria, Poland		5

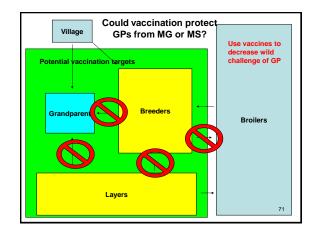
Va	axsafe MS (N	ISH)
	Company	Registration
Australia	Bioproperties	1996
Mexico	Avimex	16 Jun 1997
South Africa	Protectachick	August 2005
Japan	NBI	7 Dec 05
Argentina	Merial	7 Mar 06
Iran	Austral Medi Vet	29 Oct 07
Brazil	Merial	16 Sept 08
Indonesia	Merial	Feb 2011
EU 27	Pharmasure	June 2011
Philippines	Fort Dodge	June 2011 60

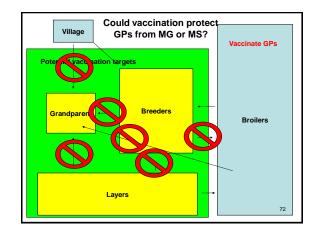
Vaccination to prevent EAA Done at Deventer laboratory using their challenge model IB intratrachael and IM all groups. Groups No MS vaccine no MS challenge (IB only) MS vaccine and MS challenge No MS vaccine but MS challenge

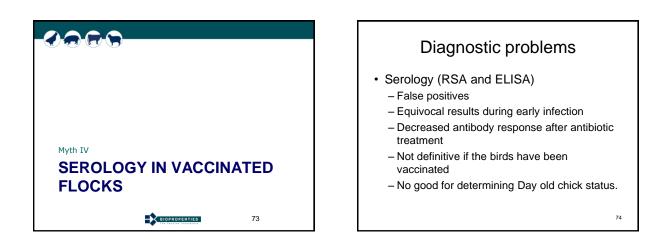
Vaxsafe® MSH, Japan Commercial layers Comparison of flocks vaccinated with MSH and ts-11 to ts-11 vaccinated flocks only Japanese management – moult flocks when they fall to 77% HD production Vaccinated flocks did not have glass top eggs compared to previous flocks Up to 4% glass top and 10% total second quality eggs before MSH vaccination.

Japanese Vaxsafe® MSH trials

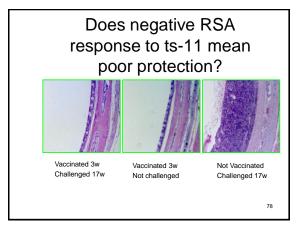

Parameter	Trial 1	Trial 2
to 57 weeks	82K sonia grey	Lohmann
Total eggs	+11.4 eggs/HD	+13.4 eggs/HD
Normal eggs	+1.4%	+2.9%
Egg mass	+795 g	+787g
FCR	-0.12	-0.07
	More eggs earlier	More eggs earlier 67




Infectious Synovitis in South Africa in brown layers

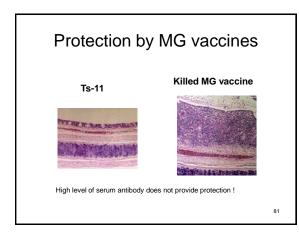

- · MSH Vaccination on infected sites
 - Increased 8-12 eggs per hen housed
 - Reduced E.coli and less culling needed
 - Less runting and better uniformity
 - Less dramatic production drops when challenged with other diseases or stresses and better recovery
 - Total reduction in infeed medication and 80% decrease in water medication

69

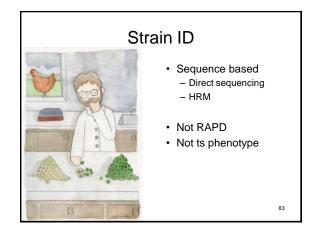


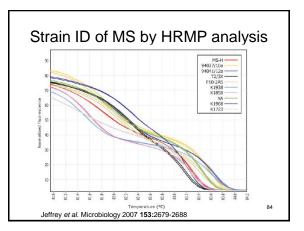
Serolo	gical resul	t after vac	cination
Antibody Response	Vaccine (6+ weeks)	Alternative explanation	Follow up
High	Field challenge vaccine worked	Field challenge vaccination failure	PCR and assessment of protection
Med	Usual	Early field challenge	PCR Rebled
Low to zero	Can happen especially before lay	Poor vaccination	PCR Rebled

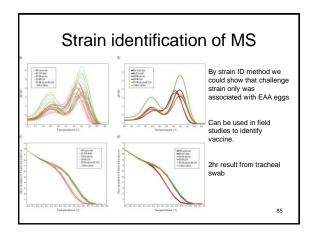
Г

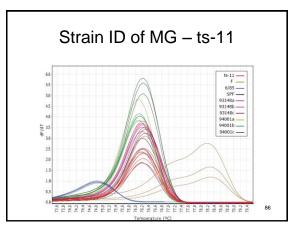

Pred	ictive	value of MG RSA
		test
	in bro	oiler breeders
Group	Age vac wk	RSA reactors (score range)*
ts-11/C	3	0% (0-0)
ts-11/NC	3	0% (0-0)
ts-11/C	6	40% (0 - 1)
ts-11/NC	6	20% (0-0.5)
NV/C	NV	0% (0-0)

Prec	lictive	value of M test	IG RSA
	in bro	oiler breede	ers
Group	Age vac wk	RSA reactors (score range)*	Tracheal mucosa µm
ts-11/C	3	0% (0-0)	101±5 ^a
ts-11/NC	3	0% (0-0)	98±5ª
ts-11/C	6	40% (0-1)	105±5 ^ª
ts-11/NC	6	20% (0-0.5)	105±6 ^a
NV/C	NV	0% (0-0)	273±44 ^b
		ested at 17 wk, immediate ested 2 weeks after challe	, ,

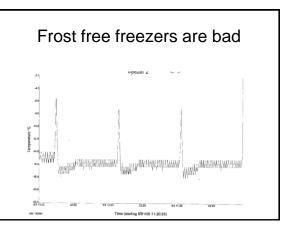

1 0	110	ınd a kille	1 MG
Group	n	RSA Score	
ts-11*	10	1.8±1.1	
Bacterin*	10	3.7±0.5	
Unvaccinated*	10	0	
Not challenged	10	0	


Comparison of ts	-11 a	nd a killed MG	vaccine
Group	n	RSA Score	
ts-11*	10	1.8±1.1	
Bacterin*	10	3.7±0.5	
Unvaccinated*	10	0	
Not challenged	10	0	




Strong Mucosal Immunity Requires:

- Antigenic stimulation at the mucosal surface
 - Live vaccines better than killed
- · Persistent antigenic stimulation
 - Immunological memory for mucosal immunity tends to be short
- MS-H persists on the mucosal surface of the bird and stimulates protection for life



ts-11 failure to protect

- Cold chain problems
- · Administration problems
- Overwhelming challenge
- · Birds already infected
- Birds challenged before immunity develops
- Antibiotics
- Immunosuppression
- MS problem not MG

Dye stains eye and mouth

- Expect 100% of mouths to be stained rapidly after application
- Only use dyes recommended by Bioproperties